Simian virus 40 large T antigen can specifically unwind the central palindrome at the origin of DNA replication.

نویسندگان

  • Weiping Wang
  • Daniel T Simmons
چکیده

The hydrophilic channels between helicase domains of simian virus 40 (SV40) large T antigen play a critical role in DNA replication. Previous mutagenesis of residues in the channels identified one class of mutants (class A: D429A, N449S, and N515S) with normal DNA binding and ATPase and helicase activities but with a severely reduced ability to unwind origin DNA and to support SV40 DNA replication in vitro. Here, we further studied these mutants to gain insights into how T antigen unwinds the origin. We found that the mutants were compromised in melting the imperfect palindrome (EP) but normal in untwisting the AT-rich track. However, the mutants' defect in EP melting was not the major reason they failed to unwind the origin because supplying an EP region as a mismatched bubble, or deleting the EP region altogether, did not rescue their unwinding deficiency. These results suggested that specific separation of the central palindrome of the origin (site II) is an essential step in unwinding origin DNA by T antigen. In support of this, wild-type T antigen was able to specifically unwind a 31-bp DNA containing only site II in an ATPase-dependent reaction, whereas D429A and N515S failed to do so. By performing a systematic mutagenesis of 31-bp site II DNA, we identified discrete regions in each pentanucleotide necessary for normal origin unwinding. These data indicate that T antigen has a mechanism to specifically unwind the central palindrome. Various models are proposed to illustrate how T antigen could separate the central origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonspecific double-stranded DNA binding activity of simian virus 40 large T antigen is involved in melting and unwinding of the origin.

Helicase activity is required for T antigen to unwind the simian virus 40 origin. We previously mapped this activity to residues 131 and 616. In this study, we generated a series of mutants with single-point substitutions in the helicase domain to discover other potential activities required for helicase function. A number of DNA unwinding-defective mutants were generated. Four of these mutants...

متن کامل

Production of simian virus 40 large tumor antigen in bacteria: altered DNA-binding specificity and dna-replication activity of underphosphorylated large tumor antigen.

A bacterial expression system was used to produce simian virus 40 large tumor antigen (T antigen) in the absence of the extensive posttranslational modifications that occur in mammalian cells. Wild-type T antigen produced in bacteria retained a specific subset of the biochemical activities displayed by its mammalian counterpart. Escherichia coli T antigen functioned as a helicase and bound to D...

متن کامل

Structure of the origin-binding domain of simian virus 40 large T antigen bound to DNA.

The large T antigen (T-ag) protein binds to and activates DNA replication from the origin of DNA replication (ori) in simian virus 40 (SV40). Here, we determined the crystal structures of the T-ag origin-binding domain (OBD) in apo form, and bound to either a 17 bp palindrome (sites 1 and 3) or a 23 bp ori DNA palindrome comprising all four GAGGC binding sites for OBD. The T-ag OBDs were shown ...

متن کامل

Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication.

The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized bioche...

متن کامل

Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication.

The simian virus 40 (SV40) large T antigen (large tumor antigen), in conjunction with a topoisomerase, a DNA binding protein, and ATP, catalyzed the conversion of a circular duplex DNA molecule containing the SV40 origin of replication to a form with unusual electrophoretic mobility that we have named form U. Analysis of this molecule revealed it to be a highly underwound covalently closed circ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 83 7  شماره 

صفحات  -

تاریخ انتشار 2009